
ON THE KERNEL CENTER OF A CONVEX BODY
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Abstract. It is well known that the set of centers of minimal balls containing

a convex body is a singleton, but the set of incenters of that body, i.e., its

kernel, need not be a singleton. On the other hand, the kernel cannot have
the same dimension as the body itself. By iterating the construction of the

kernel we define a new selector, the kernel center, which selects a point from

the kernel of a given convex body. Evidently, this selector is constant when
restricted to the family of parallel bodies of a fixed convex body. We prove

that it is directly additive but not additive, and we study further properties

of this selector.

1. Introduction

A selector for a family X of subsets of a metric space is a function on X which
selects a point from every member of this family. For n ≥ 1, we deal with the
family Kn0 of convex bodies in Rn, that is, of compact convex subsets of Rn with
nonempty interiors.

Selectors for Kn0 have been studied by many authors (see [1, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14]) .

The present paper concerns kernels of convex bodies in Rn. Using this notion,
we define a new selector, the kernel center map, whose image belongs to the kernel
of the convex body. This selector is constant when restricted to the family of inner
parallel bodies of a given convex body (see next Section for definitions). For a
convex body A this new selector is a relative of the Chebyshev center, č (see [7]),
which is the center of the unique ball in Rn with minimal radius, containing A.
Since, generally, for a convex body A ⊂ Rn a ball with maximal radius contained in
A is not unique, there is no analogue to the Chebyshev center with balls containing
A replaced by balls contained in A. The kernel center map selects the incenter of
one of the largest balls contained in a convex body. Of course, it coincides with its
incenter if the convex body has a unique largest ball contained in it.

We warn the reader that the notion of kernel is commonly used for star bodies
in a quite different meaning (see, for instance, [4],[7] and [10]). For convex bodies
these two notions of kernel differ essentially.

In Section 3 we study the Minkowski additivity and direct additivity of kernels
of convex bodies. In Section 4 we focus on the kernel center map and prove that it
is neither continuous with respect to the Hausdorff metric nor Minkowski additive.
In turn, we prove that the kernel center map is directly additive (Theorem 4.1).
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In the last section we compare the kernel center with some well known selectors:
the centroid, the Steiner point, the center of the minimal ring, the Chebyshev
center, and the pseudocenter, proving that the kernel center coincides, in general,
with none of them.

2. Preliminaries.

We use the following terminology and notation. Let A be a nonempty subset of
Rn. As usual, affA, linA, intA, relintA, clA, convA are, respectively, the affine
hull of A, the linear hull of A, the interior of A, the relative interior of A, the closure
of A, and the convex hull of A. The (closed) unit ball of Rn is denoted by Bn, and
the Lebesgue measure by λn.

Let Kn be the family of nonempty compact convex subsets of Rn and Kn0 :=
{A ∈ Kn | intA 6= ∅}. Let E be an affine subspace of Rn. The map πE : Rn → E is
the orthogonal projection of Rn onto E and K0(E) = {A ∈ Kn | relintEA 6= ∅}.

For any nonempty A1, A2 ⊂ Rn, the Minkowski sum, A1+A2, and the Minkowski
difference, A1−̇A2, are defined by

A1 +A2 := {a1 + a2 | aj ∈ Aj for j = 1, 2} and

A1−̇A2 := {x ∈ Rn | x+A2 ⊂ A1}.

It follows from the definition that if A1, A2 ∈ Kn0 , then A1 + A2 ∈ Kn0 , and if,
moreover, A2 ⊂ A1, then A1−̇A2 ∈ Kn.

For a convex body A ∈ Kn0 , the inradius r(A) is defined by

r(A) := sup{r | ∃x ∈ Rn : x+ r Bn ⊂ A}.

The kernel of A, ker(A) = A−̇r(A)Bn, is the set of incenters of A. The dimension
of ker(A) is strictly less than n (see [2, p. 59]). The inner parallel body of A at
distance 0 < λ < r is the set A−̇λBn.

Let E1, E2 ⊂ Rn be two orthogonal affine subspaces of Rn with Rn = E1 + E2.
Then Rn is the direct sum of E1 and E2, in symbols E1 ⊕ E2, and for any Aj ∈
K0(Ej), j = 1, 2, the direct sum of A1, A2 is A1 ⊕A2 := A1 +A2 ∈ K0(E).

For A1, A2 ∈ Kn, the distance from A1 to A2 is given by the Hausdorff metric
ρH .

Let k ≥ 2. For affinely independent points a1, ..., ak ∈ Rn, let ∆(a1, . . . , ak) be
the simplex with vertices a1, . . . , ak. Finally, {e1, . . . , en} is the canonical basis in
Rn.

3. The kernel of a convex body.

The following result is evident.

Proposition 3.1. The function ker : Kn0 → Kn is equivariant under isometries of
Rn.

Remark 3.1. It is easy to see that the function ker is not equivariant under affine
maps. It suffices to consider a cube and an orthogonal box with two edges of different
lengths.

It is natural to ask whether the map ker is Minkowski additive. The following
example shows that the answer is negative.



ON THE KERNEL CENTER OF A CONVEX BODY 3

Example 3.1.
Consider the following orthogonal boxes A1, A2 ∈ Kn0 , A1 = ∆(−e1, e1)+

∑n
i=2 ∆(−2ei, 2ei)

and A2 = ∆(−2e1, 2e1) +
∑n
i=2 ∆(−ei, ei). It is easy to check that ker(A1) =∑n

i=2 ∆(−ei, ei) and ker(A2) = ∆(−e1, e1) while ker(A1 +A2) = {0}.

If the convex bodies lie in orthogonal affine flats, i.e., if we are dealing with
direct sums, we can say more. For A ∈ Kn and E = affA, rE and kerE(A) denote,
respectively, the inradius and the kernel of A in K0(E).

Theorem 3.1. Let E1, E2 be orthogonal flats with Rn = E1⊕E2. Let Aj ∈ K0(Ej)
for j = 1, 2. Then

i) r(A1 ⊕A2) = minj=1,2 rEj
(Aj),

ii) kerE1
(A1) + kerE2

(A2) ⊂ kerE(A1 ⊕A2),
iii) kerE1

(A1) + kerE2
(A2) = kerE(A1 ⊕A2) if and only if rE1

(A1) = rE2
(A2).

Proof. For j = 1, 2, let Bj = πEj
(Bn). It is easy to see that Bn ⊂ B1 ⊕B2.

Let rj := rEj
(Aj) for j = 1, 2 and r = r(A1 ⊕A2). We may assume that r1 ≤ r2.

i) Let x ∈ ker(A1 ⊕ A2); then x + rBn ⊂ A1 ⊕ A2. Projecting onto Ej ,
j ∈ {1, 2}, we obtain

πEj (x) + rBj ⊂ πEj (A1 ⊕A2) = Aj

and thus r ≤ rj for j ∈ {1, 2}. On the other hand, since r1 ≤ r2, it follows
that xj + r1Bj ⊂ Aj for xj ∈ kerEj (Aj), j = 1, 2.

Hence,

(3.1) (x1 + x2) + r1B
n ⊂ x1 + x2 + r1(B1 ⊕B2) ⊂ A1 ⊕A2,

which proves that r1 ≤ r.
ii) From (3.1) it follows that if xj ∈ kerEj (Aj), j = 1, 2, then x1 + x2 ∈

ker(A1 ⊕A2).
iii) Assume first that r := r1 = r2. In view of ii), it suffices to prove that

ker(A1 ⊕A2) ⊂ kerE1
(A1) + kerE2

(A2).
Since kerE(A1⊕A2) + rBn ⊂ A1⊕A2, projecting onto Ej for j ∈ {1, 2},

we obtain
πEj

(kerE(A1 ⊕A2)) + r0Bj ⊂ Aj .
Hence, πEj (kerE(A1 ⊕A2)) ⊂ kerEj (Aj) and

πE1(kerE(A1 ⊕A2))+πE2(kerE(A1 ⊕A2)) =

ker(A1 ⊕A2) ⊂ kerE1
(A1) + kerE2

(A2).

To prove the converse implication, assume that kerE1
(A1)⊕kerE2

(A2) =
ker(A1 ⊕A2). From i) we know that r(A1 ⊕A2) = r1. Projecting onto Ej ,
we obtain πEj

(ker(A1 ⊕A2)) = kerEj
Aj for j = 1, 2. If r1 ≤ r2, then

kerE1
(A1) + kerE2

(A2) + r1B
n + (r2 − r1)Bn ⊂

kerE1
(A1) + r1(B1 +B2) + (r2 − r1)B2 ⊂ A1 ⊕A2.

Thus we get

ker(A1 ⊕A2) + r1B
n + (r2 − r1)B2

=kerE1(A1) + kerE2(A2) + r1B
n + (r2 − r1)B2 ⊂ A1 ⊕A2,

which implies r1 = r2. This completes the proof.

�
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Example 3.1 shows that, under the conditions of the previous theorem, if rE1
(A1) 6=

rE2(A2), then not only the inclusion kerE1(A1) + kerE2(A2) ⊂ kerE(A1 ⊕A2) must
be strict, but also the inequality

dim kerE1
(A1) + dim kerE2

(A2) < dim ker(A1 +A2)

may be strict.
We finish the section with the following remark which is a direct consequence of

the definition of inner parallel bodies of A ∈ Kn0 .

Remark 3.2. Let {Aλ | − r(A) ≤ λ ≤ 0} be the family of inner parallel bodies of
A ∈ Kn. Then ker(Aλ) = ker(A) for all λ ∈ [−r, 0].

4. The kernel center of a convex body.

To any convex body A ∈ Kn0 we assign two finite sequences, (ker(i)(A))i≥0 and
(Ei(A))i≥0, defined as follows:

(4.1) ker(0)(A) := ker(A) and E0(A) := affker(A);

if i ≥ 1 and dim ker(i−1)(A) > 0, then

(4.2) ker(i)(A) := kerEi−1(A)(ker(i−1)(A)) and Ei(A) := affker(i)(A).

Letm(A) := min{i ≥ 0 | dim ker(i)(A) = 0}. Evidently, the sequences (Ei(A))i≥0

and
(

ker
(i)
Ei

(A)
)
i≥0

are descending.

Moreover, if dim ker(i)(A) > 0, then dim ker(i+1)(A) < dim ker(i)(A) (cf. [2,
p. 59]).

Then, κ(A) is defined as the unique point of kerm(A)(A), or equivalently:

(4.3) {κ(A)} =

m(A)⋂
i=0

ker(i)(A).

Of course m(A) ∈ {0, . . . , n}, and it provides the number of steps needed to
reach κ(A) when passing from ker(A) to the subsequent kernels. It is clear that
κ(A) ∈ A, hence, κ : Kn0 → Rn is a selector for Kn0 .

Remark 4.1. Let us notice that for any affine flat E in Rn, with dimE = k ≤ n−1,
the functions r : K0(E) → Rn, ker : K0(E) → Kn and κ : K0(E) → Rn are well
defined by identifying E and Rk.

Since the selector κ is defined by means of the “subsequent kernels” of A, it is
natural to ask whether κ and ker behave in a similar way. To answer this, we deal
next with some properties of κ. The following statement follows from Lemma 3.1.

Proposition 4.1. For every isometry f : Rn → Rn and every A ∈ Kn0 ,
f(κ(A)) = κ(f(A)).

As it happens with the kernel, the selector κ is not equivariant under affine maps.
In fact, it is not affine equivariant when restricted to the family of simplices. For
this purpose, we notice that the incenter of a simplex T coincides with κ(T ). In [3,
Theorem 2.1] it is proven that the incenter of a simplex coincides with its centroid
if and only if all the facets of the simplex have the same area. The centroid of a
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convex body is equivariant under affine transformations (see [7, Theorem 12.3.8]).
Thus, it is enough to consider any simplex all whose facets do not have the same
area, which of course is an affine image of a regular simplex.

Next we prove that κ is not continuous with respect to the Hausdorff metric in
Rn for any n ≥ 2.

Proposition 4.2. The selector κ : Kn0 → Rn is not continuous with respect to ρH .

Proof. For every natural k, let

Ak := conv(Bn ∪ (2e1 +
k

1 + k
Bn))

and A := conv(Bn ∪ (2e1 + Bn)). Evidently A = limρH Ak while e1 = κ(A) 6=
κ(Ak) = 0 for any k. �

Let us prove the following statement concerning the kernel center map (cf. Ex-
ample 3.1).

Proposition 4.3. The selector κ : Kn0 → Rn is not Minkowski additive for any
n ≥ 2.

Proof. Let A1 be the orthogonal box A1 =
(∑n−1

i=1 ∆(−ρ ei, ρ ei)
)
⊕ ∆(−en, en),

for 2 < ρ ∈ R and A2 := conv(Bn ∪ {2ρ en}). It is easy to check that ker(A1) =∑n−1
i=1 ∆(−ρ ei, ρ ei) ⊂ lin{e1, . . . , en−1}, whence κ(A1) = 0. On the other hand,

A2 has only one largest ball centered at the origin. Thus, κ(A2) = 0.
It suffices to prove that 0 /∈ ker(A1 + A2). Let us consider the Minkowski

sum A1 + A2 =
(∑n−1

i=1 ∆(−ρ ei, ρ ei)
)

+ ∆(−en, en) + conv(Bn ∪ {2ρ en}). Since

∆(−en, 2ρen) ⊂ A2, it follows that

B :=

(
n−1∑
i=1

∆(−ρ ei, ρ ei)

)
+ ∆(−en, en) + ∆(−en, 2ρ en) =(

n−1∑
i=1

∆(−ρ ei, ρ ei)

)
+ ∆(−2en, (2ρ+ 1)en) ⊂ A1 +A2.

On the other hand, r(B) ≥ ρ. Hence, there exists a ball of radius at least ρ in
A1 +A2 while the largest ball centered at the origin and contained in A1 +A2 has
radius 2. Thus 0 /∈ ker(A1 +A2), whence κ(A1 +A2) 6= 0. �

The selector κ exhibits a nice behavior when dealing with direct sum.

Theorem 4.1. Let E1, E2 be orthogonal affine flats with Rn = E1 ⊕ E2. Let
A1 ∈ Kn0 (E1) and A2 ∈ Kn0 (E2). Then

κ(A1 ⊕A2) = κ(A1) + κ(A2).

Proof. Let r1 = rE1
(A1) ≤ rE2

(A2) = r2 and dimE1 = k. By Theorem 3.1,

r(A1 ⊕A2) = min{r1, r2} = r1.

Let us prove that

(4.4) ker(A1 ⊕A2) = kerE1
(A1) + (A2)−r1 .

Indeed
kerE1(A1) + (A2)−r1 + r1B

n ⊂ A1 ⊕A2;
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thus,

kerE1
(A1) + (A2)−r1 ⊂ ker(A1 ⊕A2).

On the other hand,

ker(A1 ⊕A2) + r1B
n ⊂ A1 ⊕A2.

Projecting onto Ej , j = 1, 2, we obtain πE1 (ker(A1 ⊕A2)) ⊂ kerE1(A1) and
πE2

(ker(A2 ⊕A2)) ⊂ (A2)−r1 . Hence

ker(A1 ⊕A2) = kerE1
(A1) + (A2)−r1 ,

which proves (4.4).
It is clear that dim kerE1

(A1) < k. Since in each step the dimension of one of
the two summands decreases, in order to get κ(A1 ⊕ A2) we need to iterate this
process a finite number of steps. After i iterations we will have, for l,m ∈ {1, 2},
l 6= m, and j ∈ {1, . . . , i − 1}, one of the following Minkowski sums: (Al)µ +

ker
(i−1)
Em

(Am) for some −rEl
(Al) < µ < 0 or kerjEl

(Al) + keri−1−j
Em

(Am). By Remark

3.2, kerEl
((Al)µ) = ker(Al). Thus, after at most mE1

(A1) +mE2
(A2) + 1 steps we

obtain κ(A1 ⊕A2) = κ(A1) + κ(A2). �

5. Final remarks

We compare the kernel center map with some well known selectors.

Proposition 5.1. The kernel center map κ is different from the Steiner point map
s, the Chebyshev center č, the centroid c0, the center of the minimal ring c, and the
pseudocenter p.

Proof.

(1) Let s be the Steiner point map, that is

s(A) :=
1

λn(Bn)

∫
Sn−1

uhA(u) dσ(u),

where hA is the support function of the convex body A. Since the Steiner
point map s is continuous with respect to ρH and Minkowski additive (see
e.g. [14]), in view of Propositions 4.2 and 4.3, κ 6= s.

(2) Let č(A) be the Chebyshev center of A, i.e., the center of the unique ball
with minimal radius containing A. Let A be the cone over the (n − 1) -
dimensional ball Bn ∩ (linen)⊥, with vertex en. Then č(A) = 0 ∈ bdA,
while κ(A) ∈ intA. Thus κ 6= č.

(3) Let c0(A) be the centroid of A. By [3, Theorem 3.2] the centroid and the
incenter of a simplex coincide if and only if all the facets of the simplex
have the same area. Hence, κ 6= c0.

(4) Let c(A) be center of the minimal ring containing A, that is, the minimizer
of RA(x)− rA(x), where RA(x) is the minimal radius of a ball with center
x containing A and rA(x) is the maximal radius of a ball with center x
contained in A (cf. [1], [7]). Since the selector c is continuous with respect to
the Hausdorff metric ([7, Theorem 12.5.8]), from Proposition 4.2 it follows
that κ 6= c.



ON THE KERNEL CENTER OF A CONVEX BODY 7

(5) Let p(A) be the pseudocenter of A, i.e., the symmetry center of the centrally
symmetric convex body with maximal volume contained in A. The selector
p is equivariant under affine maps (see [7, Th. 12.6.3]), while the kernel
center map is not. Thus κ 6= p.

�
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[12] M. Moszyńska, T. Żukowski, Duality of convex bodies, Geom. Ded. 58 (1995), 161-173.

[13] R. Schneider, Convex bodies: the Brunn-Minkowski Theory, Cambridge University Press,
1993.

[14] R. Schneider, On Steiner points of convex bodies, Israel J. Math. 9 (1971), 241-249.

Institute of Mathematics, University of Warsaw
E-mail address: mariamos@mimuw.edu.pl

Institut für Algebra und Geometrie, Otto-von-Guericke Universität Magdeburg

E-mail address: eugenia.saorin@ovgu.de


	1. Introduction
	2. Preliminaries.
	3. The kernel of a convex body.
	4. The kernel center of a convex body.
	5. Final remarks
	References

